The Circle
Irrational Number π | ||||||||||
The ratio of circumference to diameter is equal to
$$π=\frac{Circumference}{Diameter}≈\frac{22}{7}≈3.14$$ |
||||||||||
Q1. |
Find the circumference of a circle whose radius is 14 cm. Round your answer to nearest tens of centimeter.
|
|||||||||
a. | $$\frac{C}{2r}=\frac{22}{7}$$ | $$C=\frac{22}{7}×2×14=88$$ |
Irrational Number π | ||||||||||
$$Area=πr^2$$
$$Remember: π≈\frac{22}{7}$$ |
||||||||||
Q2. | Find the area of a circle whose radius is 7 cm. Round your answer to 3 s.f.
|
|||||||||
a. | $$A=\frac{22}{7}×7^2$$ | $$C=\frac{22}{7}=154$$ |
Circle: Area and Circumference | ||
$$Circumference C=2πr=πd$$
|
$$Area, A=πr^2=\frac{1}{4} πd^2$$ | |
Q3. |
Can circumference of a circle be greater than its area? Justify your answer.
|
|
$$2πr> πr^2$$ | $$2> r$ |
$$Circle: Area and Circumference$$ | ||||||||||||||
$$Circumference C=2πr=πd$$ | $$Area, A=πr^2=\frac{1}{4} πd^2$$ | |||||||||||||
Q4. | $$Complete the following table.$$
|
Circle: Relate Expressions | |||||||||
Q5. | A semicircle has radius and a circle has radius Find the relation between and if the perimeter of semicircle is equal to the circumference of the circle.
|
||||||||
a. |