Thinking questions involve combinations of more than one strategy see how knowledge of proving identities and solving equation is tested.
Steps to solve the following equations are:
• Simplify the LHS
• Then solve the equation in the given domain
Question 1: \(\frac{1 -cos θ}{sinθ} - \frac{sin θ}{1 + cos θ}\) = tan θ 2,0°≤ ≤360°
Solation: \(\frac{1 -cos θ}{sin θ} - \frac{sin θ}{1 + cos θ}\)
= \(\frac{\big(1 -cos θ)(1 + cos θ) - sin^2}{sin θ(1 + cos θ)}\)
= \(\frac{1 - cos^2θ - sin^ θ}{sin θ(1 + cos θ)}\)
= \(\frac{1 - (cos^2θ + sin^2θ}{sin θ(1 + cos θ}\)
= \(\frac{1 - }{sin θ(1 + cos θ)}\) = 0
Since = 0 we need to solve the equation tan2=0, 0°≤ ≤360° Consider domain for 2: 0°≤2 ≤720° 2=0°,180°,360°,540°,720° =0°,90°,180°,270°,360°
Note: Period of tan2 is 90°. Continue adding multiples of 90 in the domain to get all the possible solutions to the first vale of 0°.
Question 2: Prove Identity
\(\frac{1 +cos θ}{sin θ} + \frac{sin θ}{1 + cos θ}\) = \(\frac{2}{sin θ}\)
Solation: Simplify the LHS
\(\frac{1 +cos θ}{sin θ} + \frac{sin θ}{1 + cos θ}\) = \(\frac{2}{sin θ}\)
= \(\frac{(1 + cos θ)^2θ + sin^2}{sin θ(1 + cos θ)}\)
= \(\frac{1 +2 cos θ+ cos^2θ + sin^2}{sin ( 1 + cos θ)}\)
= \(\frac{2 + 2 cos θ}{sin θ(1 + cos θ)}\) = \(\frac{2}{sin θ}\)
Then Solve
\(\frac{1 +cos θ}{sin} + \frac{sin θ}{1 + cos θ}\) = \(\frac{2}{sin θ}\) = \(\frac{2}{cos θ}\)
Solve Equation
\(\frac{2}{sin θ}\) = \(\frac{2}{cos θ}\)
\(\frac{2}{2}\) = \(\frac{sin θ}{cos θ}\)
1 = tan θ
=45°+180,∈
Question 3: Prove the identity
\(\frac{cos θ}{1 - tan θ} + \frac{sin θ}{1 - cot θ}\) = \({sin θ + cos θ}\)
Solation: \(\frac{cos θ}{1 - tan θ} + \frac{sin θ}{1 - cot θ}\) = \({sin θ + cos θ}\)
LHS = \(\frac{cos θ}{1 - tan} + \frac{sin θ}{1 - cot θ}\)
= \(\frac{cos θ}{1 - frac{sin θ}{cos θ}} + \frac{sin θ}{1 - \frac{cos θ}{sin θ}}\)
= \(\frac{cos}{\frac{cos θ - sin θ}{cos θ}} + \frav{sin θ}{\frac{sin θ - cos θ}{sin θ}}\)
= \(\frac{cos^2θ}{cos θ - sin θ} + \frac{sin^2θ}{sin θ - cos θ}\)
= \(\frac{cos^2θ}{cos θ - sin θ} - \frac{sin^2}{cos θ - sin θ}\)
= \(\frac{cos^2 θ - sin^2θ}{cos θ - sin θ}\) = \(\frac{(cos θ + sin θ)(cos θ- sin θ}{cos θ - sin θ}\)
= \({cos θ + sin θ}\) = \({LHS}\)
Then find general solution for
\(\frac{cos θ}{1 - tan θ} + \frac{sin θ}{1 - cot θ}\) = \({sin θ - cos θ}\)
Solution of the equation
\(\frac{cos θ}{1 - tan θ} + \frac{sin θ}{1 - cot θ}\) = \({sin θ - cos θ}\)
\( = [latex{cos θ + sin θ}\)
\( = [latex{sin θ – cos θ}\)
is the equation to be solved
2 cos θ = 0
cos θ = 0
θ = 90° (2+1), ∈