Prove the following trigonometric identities
Question 1 : \(\frac{tan θ + sec θ - 1 }{tan θ - sec θ + 1} \) = \(\frac{1 + sin θ}{cos θ}\) = \({tan θ + sec θ}\)
Solution : \(\frac{tan θ + sec θ - 1 }{tan θ - sec θ + 1} \) = \(\frac{1 + sin θ}{cos θ}\) = \({tan θ + sec θ}\)
LHS = \(\frac{tan θ + sec θ - 1 }{tan θ - sec θ + 1} \) = \(\frac{tan θ + sec θ - sec^2θ - (tan^2θ) }{tan θ - sec θ + 1}\)
\(\frac{tan θ + sec θ - [(sec θ + tan θ)(sec θ -tan θ]}{tan θ - sec θ + 1} \) = \(\frac{(tan θ + sec θ) (tan θ - sec θ + 1 }{tan θ - sec θ + 1} \)
tan θ + sec θ = \(\frac{sin θ}{cos θ} × \frac{1}{cos θ}\) = \(\frac{sin θ + 1}{cos θ}\)
= \(\frac{sin θ ~ cos θ [ 1 - (sin θ - cos θ)] + (sin θ - cos θ)}{[1 + (sin θ - cos θ) ] [ 1 - ( sin θ - cos θ )}\)
Question 2 : \(\frac{cos x - sin x + 1 }{cos x + sin x - 1}\) = \(\frac{cos x - 1 }{sin x}\)
Solution : \(\frac{cos x - sin x + 1 }{cos x + sin x - 1}\) = \(\frac{\frac{cos x}{sin x} - \frac{sin x}{sin x} + \frac{1}{sin x}}{\frac{cos x}{sin x} - \frac{sin x}{sin x} - \frac{1}{sin x}}\) = \(\frac{cot x - 1 + csc x }{cot x + 1 - csc x}\)
= \(\frac{cot x + csc x - (csc^2x - cot^2x)}{cot x + 1 - csc x}\) = \(\frac{cot x + csc x - [(cscx + cot x)(csc x - cot x]}{cot x + 1 - csc x}\)
= \(\frac{cot x + csc x )1 - (cscx - cotx)}{cot x + 1 - csc x}\) = \(\frac{cot x + csc x )(cscx + 1 - cot x)}{cot x + 1 - csc x}\)
= \(cot ~x + csc~ x\) = \(\frac{cos x }{sin x} + \frac{1}{sin x}\) = \(\frac{cos x + 1 }{sin x}\)
Question 3 : \(\frac{sin θ }{sec θ + tan θ -1} + \frac{cos θ }{csc θ + cot θ - 1}\)
Solution : \(\frac{sin θ }{sec θ + tan θ -1} + \frac{cos θ }{csc θ + cot θ - 1}\)
LHS = \(\frac{sin θ }{sec θ + tan θ -1} + \frac{cos θ }{csc θ + cot θ - 1}\) = \(\frac{sin θ }{\frac{1}{cos θ}} + \frac{sin θ}{cos θ - 1} + \frac{cos θ}{\frac{1}{sin θ}} + \frac{cos θ}{sin θ} - 1\)
= \(\frac{sin θ . cos θ }{1 + sin θ - cos θ }\) + \(\frac{ cos θ ~ sin θ }{1 + sin θ - cos θ }\) = \(\frac{sin θ . cos θ }{1 + sin θ - cos θ }\) + \(\frac{ cos θ ~ sin θ }{1 - ( sin θ - cos θ) }\)
= \(\frac{sin θ ~cos θ[ 1 - ( sin θ - cos θ ) ] + 1 + (sin θ - cos θ }{1 + ( sin θ - cos θ)][1 - (sin θ - cos θ ]}\) = \(\frac{2~sin θ cos θ [2] }{1 - (sin θ - cos θ ) ^2 }\)
= \(\frac{2~sin θ cos θ}{1 - (sin ^2θ - cos^2 θ - 2 sin θ cos θ ) }\) = \(\frac{2~sin θ cos θ }{1 - (1 - 2~sin θ cos θ)}\) = \(\frac{2~sin θ cos θ }{2~sin θ cos θ }\) = 1