Quotient Identity
tanθ = \(\frac{sinθ}{cosθ}\) cotθ= \(\frac{cosθ}{sinθ}\)
Pythagorean Identity
sin2 θ + cos22 θ = 1
1 + tan2θ = sec2θ
1 + cot2θ = csc2θ
Rearrange Pythagorean Identity
sin2θ= 1 − cos2θ
sin2θ = (1 + cos )(1 − cosθ )
cos2θ = 1 − sin2θ
cos2θ = (1 + sinθ )(1 − sinθ )
sec2θ − tan2θ = 1
(secθ + tanθ )(secθ − tanθ ) = 1
(secθ + tanθ ) = \(\frac{1}{(secθ - tanθ)}\)
(secθ – tanθ ) = \(\frac{1}{(secθ + tanθ)}\)
csc2θ − cot2θ = 1
(cscθ + cotθ )(cscθ − cotθ ) = 1
(cscθ + cotθ) = \(\frac{1}{(cscθ - cotθ)}\)
(cscθ – cotθ) = \(\frac{1}{(cscθ + cotθ)}\)
Reciprocal Identity
cscθ = \(\frac{1}{sin}\) ; secθ = \(\frac{1}{cosθ}\); cotθ = \(\frac{1}{tanθ}\)
Even Odd Identity
sin(−θ) = −sinθ
cos(−θ) = −cosθ
tan(−θ) = −tanθ
csc(−θ) = −cscθ
sec(−θ) = −secθ
cot(−θ) = −cotθ
Co-Function Identity
sin(90° − θ) = cosθ
cos(90° − θ) = sinθ
tan(90° − θ) = cotθ
Related Acute Angle
sin(180° − θ) = sinθ
cos(180° − θ) = −cosθ
tan(180° − θ) = −tanθ
sin(180° + θ) = −sinθ
sin(180° + θ) = −cosθ
sin(180° + θ) = tanθ
sin(360° − θ) = −sinθ
sin(360° − θ) = cosθ
sin(360° − θ) = −tanθ
Coordinate Plane Point \(S^o_H\) \(C^A_H\) \(T^o_A\)
P(a, b ), = \(\sqrt{a^2 +b^2}\) > 0
sinθ = \(\frac{b}{r}\)
cosθ = \(\frac{a}{r}\)
tanθ = \(\frac{b}{a}\) ; cscθ = \(\frac{r}{b}\) ; sec θ= \(\frac{r}{a}\) ; cotθ = \(\frac{a}{b}\)