Review Compound Angle Formula
sin(A+B)= sinA cosB + sinB cosA
sin(A-B)= sinA cosB – sinB cosA
sin2A = 2sinAcosA
cos(A+B)=cosA cosB – sinA sinB
cos(A-B)=cosA cosB + sinA sinB
cos 2A = 2cos2A – 1
cos2A = 1-2sin2A
tan(AB )= \(\frac{tan A\pm tan B}{1\mp tanA tanB }\)
Review Radian Measurements
180º =\(\pi\) rad
60º=\(\frac{\pi}{3}\) rad
30º= \(\frac{\pi}{6}\)rad
90º= \(\frac{\pi}{2}\)rad
360º=2\(\pi\) rad
Derivatives of Trigonometric functions
\(\frac{d(Sin~x)}{dx}\)= cos x \(\frac{d(csc~x)}{dx}\) = – csc x cot x
\(\frac{d(cos~x)}{dx}\) = -sin x \(\frac{d(sec~x)}{dx}\) = sec x tan x
\(\frac{d(tan~x)}{dx}\)= -sec2x \(\frac{d(cot~x)}{dx}\) = – csc2 x
Further Trigonometric Limits
lim(x->0)\(\frac{sin x}{x}\)=1
lim(x->0)\(\frac{cos x-x}{x}\)=1
lim(x->0)\(\frac{tan x}{x}\)=1
Derivative of other Trigonometric Functions
cosec x = \(\frac{1}{sin x}\) => (cosec x)’= -cotx cosecx
sec x = \(\frac{1}{cos x}\) => (sec x)’= secx tanx
cotan x = \(\frac{1}{tan x}\) => (cotan x)’= cosec2x
Inverse of trigonometric functions
If y= sin x then x=arcsin y or x= sin-1y
If y= cos x then x=arccos y or x= cos-1y
If y= tan x then x=arctan y or x= tan-1y
Applications of Trigonometric Functions
Trigonometric functions are used in the calculation of integrals by substitution, use the following :
For \(\sqrt{(a^2 -b^2)}\) apply, x = a sinθ
For \(\sqrt{(a^2 -b^2)}\) apply, x = a tanθ
For \(\sqrt{(a^2 -b^2)}\) apply, x = a secθ